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I, INTRODUCTION 

A systematic look at new projectile shapes for small arms 
application was recently completed.1  This study concluded that a 
projectile with length to diameter ratio 5.5 was superior to 
conventional projectiles with length to diameter ratios near 3. These 
conclusions were subsequently verified experimentally.2»3 A much 
further increase in effectiveness could be achieved if the base drag 
could be eliminated as shown in Figure 1 in which effectiveness is 
measured as remaining energy at a given range. Reduced time of flight 
and a flatter trajectory are two other advantages achieved with the 
lower drag projectiles. This report is concerned with a systematic 
approach to try to eliminate base drag with materials compatible with 

small arms ammunition. 

11. SELECTION OF MATERIALS 

Two recent reviews ' on the reduction of base drag in super- 
sonic flow by direct injection of heat and mass into the near wake 
both conclude the ejected gases should have the following characteristics: 

1. low molecular weight 
2. low ejection velocity 
3. combustion in the near wake. 

Obvious candidates from such considerations are fuel-rich solid 
propellants stored in the rear of the projectile. However, such 
materials must be able to be ignited by the combustion gases in the barrel; 
to continue burning in the rapid pressurization in the gun barrel 
and depressurization when the projectile exists the gun, to sustain 
combustion during projectile flight at which time the base pressure will 
be near atmospheric. These conditions ruled out conventional gun and 
rocket propellants, but not solid pyrotechnics. The pyrotechnics may 
also meet the conditior,; set above for the ejected gases, since 
Stevenson6 report;, the intensity of light emitted by a burning 
pyrotechn-k is related to the amount of fuel burning in the wake. Other 
author»' noted a direct correlation between the quantity of excess fuel 
in a pyrotechnic and light intensity suggesting that fuel rich 
pyrotechnics may provide the after-burning sought. Tracer rounds have 
been observed to have lower total drag coefficients than corresponding 
conventional rounds8»9. The drag coefficient change varies with 
mach number and is less pronounced with boattailing, suggesting this 
change is associated with a change in the base drag.10 A comparison 
between 20mm tracer and conventional round is shown in Figure 2. Thus, 
fuel-rich pyrotechnics were selected for investigation as "fumers" (a name 
chosen to distinguish these materials from conventional tracers). 

; 

^References ore  listed on page 45, 
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To test fuel-rich pyrotechnics as fumers, wind tunnel tests 
were performed at the Naval Ordnance Laboratory's Hypersonic Tunnel. 
This funnel could be preheated so that ambient temperature could be 
achieved in the test section and the wind tunnel model constructed for 
?hese tests could be spun to over 50,000 revolutions/minute. A wind 
tunnel test plan was constructed to test the following: 

1 verify that the burning pyrotechnics change base pressure 
2 correlate such an effect as a function of mach number, spin 

rate, fuel content, and the area of the burning surface in 
order to find the optimum mix. 

The constituents used in these tests are listed in Table I; the wind 
tunnel test plan is listed in Table II. 

III.  EXPERIMENTAL 

The study was conducted in a wind tunnel at freestream Mach 

numbers of 1.5, 2.0 and 2.5 at duplicated --^-^P^^^^^^^. 
temperatures (at a reduced pressure at Mach 2.5). ^^1, cent er body 
tvoe nozzles of 6-inch exit diameter were designed and constructed toi 
this program. T^e nozzles were installed in the f^ Hypersonic Turme 
System ufing a special settling chamber. Figure 3 illustrates the test 

setup. 

The tests were conducted using an open-jet type test arrangement 
The tunnel tet cell pressure was controlled by means of an orifice at 
the diffuser inlet and it was maintained at approximately seventy 
oerceit of the static pressure of the test jet. The interaction of the 
uostreL Mach line, emanating from the nozzle exit, and the model wake 
centerUnfwas approximately 3.0, 4.5 and 6.2 model diameters for the 

Mach 1.5, 2.0 and 2.5 nozzles respectively. 

To eliminate model support effects on the base pressure, the model 
was slmuieJ by a cylindrical nozzle centerbody which was supported in 
the settling chamber upstream of the nozzle throat. The model was 1 
inch in diameter and approximately 10.5 inches long (measured from the 
Nozzle throat! It was instrumented with ten pressure transducers and 
one thermocouple. Figure 4 shows the instrumentation layout. Table III 

gives the location data. 

As part of the facility calibration procedure, model .b^^P^S^e 

distribution and Pitot pressure and total-temperature variat on n the 

model wake region were also measured  A special P^.^f^^^/Jf^r 
pressure orifices was installed in the model base cavity (Figure 4) for 
the base Dressur^ distribution measurements and a Pitot pressure rake 
containing 2 Pressure probes and a temperature rake with 10 shielded 
thermocouples (Figure 5 and Table III) were used for the wake flow 

surveys. 

12 
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Table  I. 

Wind Tunnel Experiments 
At Naval Ordnance Laboratory 

Capsule No. Composition 

1 R20C 
2 R284 
3 Fl 
4 F5 
5 Fi3 
6 F14 
7 F1/F4 layered 
8 F4 
9 F4H ■6% bi aderb 

10 F4H ■15% b inderb 

11 F4^ ■20% b inderb 

12 Mg+20%c 

13 30% 
14 36.5 
15 40 
lb SO 
17 60 
18 67.8 
19 70 
20 75 
21 36.5 (1/4) 
22 36.5 (1/2) 
23 36.5 (3/4) 
24 50 (1/4) 
25 50 (1/2) 
2b 50 (3/4) 
27 67.8 (1/4) 
28 67.8 (1/2) 
36 67.8 (3/4) 
31 Mg 36.5 
I 36 (1/2) 
30 36 1/2 (1/2, 
32 36 1/2 (.3/4^ 
34 50 
11 50 
33 50 (1/2) 
35 so (3/4) 
29 67.8 
III 67.8 
37 67.8 
38 67.8 

Mach No. Spin Rate,  rpm x 1000 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
t) 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

50 
25 
50 
50 
50 
25 
50 
50 
50 
25 
50 
50 

13 
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Table I. 

Wind Tvmnel Experiments 
At Naval Ordnance Laboratory (Cont'd) 

Capsule No. 

39 

Composition 

Mg 36 

Mach No.   £ .pin Rate, rp m x lüüü 

2.5 50 
40 36 2.5 25 

41 36 (1/2) 2.5 50 
42 36.5 (3/4) 2.5 50 

43 50 2.5 50 

44 50 2.5 75 
45 50 (1/2) 2.5 50 

4b 50 (3/4) 2.5 50 

47 67.8 2„5 50 

48 67.8 2.5 25 

49 67.8 a/2) 2.5 50 

50 67.8 (3/4) 2.5 50 

51 Mg 36.5 1.5 50 

52 36.5 1.5 25 

53 36.5 (1/2) 1.5 50 

54 36.5 (3/4) 1.5 50 

55 50 1.5 50 

5b 50 1.5 25 

57 50 (1/2) 1.5 50 

58 50 (3/4) 1.5 50 

59 67.8 1.5 50 

bO 67.8 1.5 25 

61 67.8 (1/2) 1.5 50 

b2 67.8 (3/4) 1.5 50 

percent by weight 

calcium resinate 

binary mixtures of magnesium and strontium nitrate, 
magnesium content in percent by weight is listed. 

Only the 
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Table II. 

Constituents of Pyrotechnic Mixes Used in the 
NOL Wind Tunnel Tests 

Mix Designation 

R20C 

R284 

1-136 

Fumer 1 

Fumer 3 

Fumer 4 

Fumer 13 

Fumer 14 

calcium resinate 

Polyvinylchloride 

Constituent Percentage by Weight 

Sr02 
CaResa 

Mg 
Pb02 
Ba02 

Mg 
Sr(N03)2 
PVCb 

CaRes 
Sr02 

Mg 
Si02 
C 
CaRes 

Al 
Sr(N03)2 
CaRes 

Mg 
Sr(N03)2 
CaRes 

Fumer 4 
gelatin 

Fumer 1 
gelatin 

65.7 
6.0 

21.5 
3.4 
3.4 

28 
55 
17 

10 
90 

8.1 
78.8 
4.0 
9.1 

27.1 
63.8 
9.1 

33.2 
57.7 
9.1 

90 
10 

90 
10 
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Table III.     Instrument Location Data 

Instru- Roll Axia 1 Radial Orifice 

ment Angle, 9 Distance, X Distance, R Diameter 

deg in in in 

PI 60 0 0.45 0.046 

?2 150 0 0.45 0.046 

P3 240 0 0.45 0.046 

P4 330 0 0.45 0.046 

P5 120 -0. 08 0.50 0.032 

Pb 300 -0. 08 0.50 0.032 

P7 210 -0. 25 0.50 0.032 

P8 180 -0. 50 0.50 0.032 

P9 30 -0 25 0.40 0.032 

P10 0 -1 00 0.40 0.032 

Pll 0 0 0.115 0.046 

P12 0 0 0 0.046 

P13 180 0 0.115 0.046 

P14 180 0 0.230 0.046 

P15 180 Ü 0.115 0.046 

P16 0 Xp 1.125 0.046 

P17 0 Xp 0.875 0.046 

P18 0 Xp 0.625 0.046 

P19 0 Xp 0.375 0.046 

P20 0 Xp 0.125 0.046 

P21 0 Xp 0 0.046 

P22 180 Xp 0.125 0.046 

P23 180 Xp 0.250 0.046 

P24 180 Xp 0.345 0.046 

P25 180 Xp 0.500 0.046 

P26 180 Xp 0.625 0.046 

P27 180 Xp 0.750 0.046 

P28 180 Xp 0.875  ' 0.046 

P29 180 Xp 1.125 0.046 

P30 180 Xp 1.375 0.046 

P31 180 Xp 1.625 0.046 

P32 180 Xp 1.875 0.046 

P33 180 Xp 2.125 0.046 

P34 180 Xp 2.375 0.046 

P35 180 Xp 2.625 0.046 

TCI 210 c .06 0.45 

TC2 345 XTC 0.50 

TC3 345 XTC 0.25 

TC4 0 XTC 0 

TC5 165 XTC 0.25 

TC6 165 XTC 0.50 

TC7 165 XTC 0.75 

TC8 165 XTC 1.00 

TC9 165 XTC 1.25 

TC10 165 XTC 1.50 

TC11 165 XTC 1.75 

Reference  figures 4 and 5, 
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The pressure orifice diameters ranged from 0.032 to 0.046 inch. On 
the model outer surface, and inside the cavity, locations P6 to P10, the 
orifice diameter was 0.032 inch. At the base, locations PI to P4 and 
Pll to P15, it was 0.046 inch. The pitot pressure rake was made up of 
0.063 in. O.D., 0.046 in. I.D. tubes spaced 1/4 or 1/8 inch apart. The 
temperature rake was made of chromel-alumel thermocouples of .06-inch 
diameter wire shielded with a .095 O.D., .0625 I.D., vented stainless- 
steel tubing.  The temperature rake was positioned 4.125 inches 
downstream of the Pitot rake and rotated 15 degrees relative to the 
Pitot rake. The pitot pressure - temperature rake assembly was moved to 
different axial positions during the flow calibration tests. The rakes 
were also used during the combustion tests during which it was located 
six inches downstream of the model base (si?v inches to the Pitot rake.) 
A photograph of the test section with the rakes is shown in Figure 6. 

With exception of Pll to P15 each orifice was connected to a 
separate pressure transducer (strain gage type, Statham) for continuous 
measurement.  Pressures at orifices Pll to P15 were connected to a 
single transducer through a scanner-type valve in order to obtain a more 
precise relative variation across the model base. The output of the 
pressure transducers and of the thermocouples were recorded on magnetic- 
tape using the Hypersonic Tunnel analog-to-digital recording system. 

The pyrotechnics were presse into hollow, steel cylinders, one 
of which is shown in Figure 7. A pressing pressure of 240 MN/m^ (35,000 psi) 
was used for all samples. The flow area restric ors were steel washers 
sized to reduce the flow by 25, 50, or 75 percent respectively. An air 
turbine, illustrated in Figure 8, served to provide the required spin 
rates. The turbine air was ducted in an exhausted through the model 
support struts. The turbine spin rate was measured with a magnetic-type 
pickup and it was recorded on tape along with the model pressures. 

The photographic instrumentation included a schlieren system with 
a 35mm and a 70mm camera, a 16mm color-film camera, and a TV camera 
(Figure 9). The schlieren system with its light beam in the horizontal 
plane viewed the flow field through the tunnel side windows. The 16mm 
and the TV cameras viewed the test area through the tunnel top window. 
The 35mm pulse-type camera was operated at 10 pictures per second (pps), 
the 70mm camera at approximately 1 pps, and the 16mm camera at 24 pps. 
The TV camera was used to monitor the test section events. 

The pyrotechnics were ignited with a 250-watt Westinghouse CO2 
laser. The arrangement of the laser is shown in Figure 9. The light 
beam diameter at the plane of impingement on the propellant was about 
3/8-inch.  Continuous mode was used with the exposure ranging from two 
to five seconds. 
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IV.  RESULTS 

,,; 

A.  Initial Runs-Flow Calibration 

Three nozzles were constructed with nominal Mach numbers 1.5, 2, 
and 2.5 respectively. The first runs were made to calibrate the nozzles 
and to insure that the base pressure and free stream pressure region 
were unaffected by reflections from the nozzles. In addition we wished 
to see the effect of the presence of the Pitot rakt on the near-wake 
region. The Pitot rake (Figure 5) was used for these surveys. The 
rake was held in the vertical centerplane with probes extending 1.12 
inches above and 2.75 inches below the centerline for all the tests. 

The Mach number profiles at the nozzle exit were uniform containing 
on]y slight deviations. The Mach number measured for each nozzle was 
1.56, 1.98, and 2.56 respectively. Schlieren photographs (Figures 10-12) 
also show the flow to be free of strong non-uniformities or disturbances 
at the nozzle exit. Series of Mach waves visible on the photographs are 
due to small imperfections in the nozzle contour or to discontinuities 
such as openings for the spin mechanism screws on the centerbody. The 
Mach 1.5 nozzle contains one somewhat more pronounced disturbance.  Its 
influence on base pressure is estimated to be one or two percent. Static 
pressures measured on the centerbody (P7 and P8) are in good agreement 
with the static pressures from the Pitot measurements. The surface 
pressure measured at stations P5 and P6 is expected to be influenced by 

the base flow and to be slightly lower.5 

The base pressure data, radial distribution, and its variation with 
the axial rake position are summarized in Figures 13-15. To avoid 
interfering with base pressure data, the axial rake remained six inches 
or more behind the model during the base burning tests. This limited 
severely the planned surveys of downstream pressure and temperature 

with burning. 

B. Base-Burning Runs 

A summary of all the runs for which base burning data was obtained 
is shown in Table IV. A glance at Table I shows that it was not possible 
to follow the test sequence originally planned, since it was not 
possible to ignite magnesium-strontium nitrate mixes with more than 
thirty percent magnesium. Two important exceptions were noted. When the 
fuel capsules were heated to approximately 470K, the 36,5/63.5 binary 
Mg/Sr(N03)2 mixes could be ignited. The temperature of the capsule is 
estimated to have been 390K at the time of ignition. These runs will be 
referred to as preheated under the remarks column in Table IV. It was 
also found that the presence of the area restrictors aided ignition. A 
similar effect was noted during actual 7.62mm fumer firings.   Since 
successful ignition had been achieved for every candidate mix proposed m 
the test series with a fifty-watt CO2 laser12, it was thought that part of 
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the problem was the presence of the supersonic flow. Run 1901 was 
made with no flow, and as indicated in Table IV, the mix immediately 
limited. It was noted that mixes with strontium peroxide as the oxidizer 
ignited more readily and burned steadily. Thus, additional capsules were 
made up with T20C mix to test the effect of spin on base drag reduction, 
and a series of binary magnesium-strontium peroxide mixes to test the 
effect of the magnesium content. Also added was a "dark fumer , 1-136, 
to the test. This mix uses the binder, calcium resinate, as the fuel; 
it contains no magnesium. It also emits no visible light when used as 

a tracer. 

The pressure-time histories for the runs for which complete or 
partial combustion occurred are shown in Appendix A. The data are 
presented with the base pressure normalized to the free-stream static 
pressure. A few seconds of pre-and post-combustion pressure history are 
shown for each run. The pre-combustion pressure is steady and the value 
in close agreement with the base pressure measured during the flow 
calibration tests. The increase due to combustion is step-type for runs 
for which the fuel ignited quickly and burned steadily. For a number 
of runs the fuel ignited slowly or non-steadily and the increase m 
base pressure was slow and not always steady. On Run 10 the tuei 
ignited with a very long delay necessitating tunnel flow shutdown before 
completion of combustion. On Run 61 the fuel ignited and burned a few 
seconds after the layer of a special igniter-mix was burned» 

At the end of burning the base pressure returned to the pre- 
combustion value for the runs for which the fuel burned clean, "^hout 
leaving a heavy layer of slag. In some cases, particularly capsules with 
area restrictors, the slag protruded outside the base cavity causing 
the post-combustion base pressure to read higher (Runs 35, 36 and 42). 
On Run 63, due to spin-induced vibrations, the capsule moved axially 
protruding from the base cavity and causing the pre-combustion pressure 

to read higher. 

The pressure-time histories in Appendix A were prepared from 
measurements at station P2. Pressures at other stations (PI, P3, P4) 
were essentially the same except for the effects of slag formation. 

The data from these runs are presented in Table V. The base drag 
coefficient is related to the measured base pressure, free stream 
pressure, air velocity, and air temperature by the following equation. 

(P. •V 
JDb 

l/2p U 

(1) 

Samples of schlieren photographs taken with the 70mm camera are 
shown in Appendix B. Gross effects may readily be seen on such 
features as the extent of the flame, the effect of spin on the flame- 
wake interaction (runs 42 vs 43, runs 62 vs 63), and the effect of 

combustion on the wake neck location. 
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Results of the wake survey proved inconclusive, since the rake 
was positioned six inches downstream to avoid interfering with the base 
pressure measurements which were the prime concern in this first series 

of tests. 

V. DISCUSSION 

The first stated objective was to verify experimentally that the 
"tracer effect" is a base pressure change. The results clearly affirm 
that indeed it is. Table VI extracts the pertinent test data from the 
previous section. Table VI also points out that the pyrotechnic mix 
producing the greatest pressure change burns fastest. 

To assess this more quantitively, one can compute the specific 

impulse for the sample as shown below: 
rtb 

CPv ■Pbn^ 
dt 

FSI (2) 

where FSI = the fumer specific impulse, 
A = area of the base, 

tb ■ burning time, 
Pb = base pressure at time t during burning, 
Pbn = base pressure no burning, 
m = mass „ 

This expression may be evaluated in the wind tunnel experiment from 
integrating the pressure-time history and using previously determined 
values for the area and the fumer mass.  In standard international units, 
the FSI has units of newton-second/kilogram. For applications where one 
is volume limited, a more appropriate figure of merit would be the 
"volumetric impulse," obtained by multiplying the FSI by the density of 
the fumer. For the standard mixes in Table VI the FSI in standard 

international units are: 

R20C 
R284 
F-l 

3200 
6300 
3200 

(330) 
(640) 
(330) 

The numbers in parentheses are the fumer specific impulse in conventional 
engineering units (pound force-second/pound mass). 

The effect of spin was the most dramatic as evidenced from both 
Table V and VII. The effect of spin on burning time and base pressure 
is illustrated in Figure 16 where pressure-time histories for spin and 
non-spin R20C are superimposed. The burning time of R20C is decreased 
by one-fourth at 43,500 rpm, but the faster burning, spinning R20C 
increases the base pressure more than the unspun mix. This increase is 
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Table VII.    Fumer Specific  Impulses for Pyrotechnics 
Tested as Fumers 

Run No. Mix Mach No. %Area Restricted Isp,n-sec/kg 

1 R20C 1.98 _ 3200 

2 R284 1.98 - 6300 

3 F-l 1.98 - 3200 

9 F-4+6% binde 
a 

(N03)2
b 

1.98 - 3300 

12 
13 
27 
29 
35 
35 
38 
42 
62 
63 

stoich Mg/Sr 1.98 
1.98 

50 
75 

3600 
4100 

ii 1.98 50c 4800 

n 1.98 75 c 3450 

n 1.56 50c 1400 

>• 1.56 75 c 1800 

n 1.98 _c 4550 

II 2.49 _c 4000 

R20C 
R20C 

1.56 
1.56 Id 

2000 
750 

calcium resinate 

'36.5/63.5 percent by weight binary mix 

cpreheated to around 500K 

^pin rate 43,500 rpm 
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not sufficient to overcome the reduced burn time as far as the fumer 
specific impulse is concerned so we would predict R20C to be a 
particularly poor fumer. Such results were observed in firing tests.6 

The coverage of the spin effects is not as extensive as it was originally- 
intended because the capsules with area restrictors were not balanced. 

The effect of the flow area restrictors on burning time and base 
pressure change are shown in Figure 17. As noted in the remarks 
column in Table IV, the area restrictors melted, so the only conclusion 
we draw from these tests is that steel washers used in the projectile 
as flow restrictors will not affect fumer performance. An unexpected 
result from the use of the area restrictors was that the mixes with the 
area restrictors were easier to ignite. This, too, was noted during 
the actual firing tests.6 Reliable ignition of F-l was achieved only 
when area restrictors were employed. 

One series for which no data were obtained was the effect of 
magnesium content on drag reduction (Runs 12-20 Table I). As was 
pointed out in reference 7, previous wind tunnel experiments designed 
to test the effect of various gases ejected into the wake on base 
pressure concluded that the ideal base drag reducing fumer would be a 
hot, low-molecular weight gas that burned in the near-wake with the air 
present there. These authors speculated the excess magnesium in a fuel- 
rich magresium-containing pyrotechnic might provide the sought for hot 
low-molecular weight gas that would burn in the wake and be, therefore, 
an ideal fumer candidate. Since this hypothesis was one of the chief 
objectives of the tests, we prepared a series of capsules using 
strontium peroxide as the oxidizer. We chose this oxidizer since we 
could more easily ignite it than strontium nitrate mixes and because the 
stoichiometric binary mixture contained a relatively low concentration 
of magnesium (17%), so we were confident we could ignite some capsules 
with excess magnesium. As Table V indicates, we burned successfully 
the 20/80 and 30/70 binary mixes, but were unsuccessful with the 40/60 
and 50/50 mixes. Nonetheless, the predicted trend of increasing drag 
reduction with an increasing amount of excess magnesium appeared as 
shown in Table VIII. We also included data for F-l which also uses 
strontium peroxide as the oxidizer as well as 1-136 which contains no 
magnesium. 

Table VIII,  Effect of Fuel Concentration (M =1.98) 

Mix 

F-l (8.1% Mg) 
20/80 Mg/Sr02 
30/70 Mg/SrO, 
1-136 

32 
46 
65 
IS 

I)b tb, sec 

5.1 
1.7 
1.0 
4.3 
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These runs also show how we can design fumers using binders and 
different oxidizers by comparing the percent drag reduction and burning 
time of R20C and the 20/80 Mg/Sr02 mix as shown below 

20/80 Mg/SrO, 
R20C 

%AC 
Db 

46 
50 

tb, sec 

1.7 
2.7 

The addition of different fuels (carbon and calcium resinate) and 
different oxidizers (Pb02 Ba02) increases the burning time while keeping 
the drag reduction nearly constant. This is precisely what we must do 
in the future in a systematic manner to achieve the optimum fumer for a 
given application. We are not starting from scratch. Caven and 
Stevenson6 point out that the visibility of a tracer is a function of 
the excess magnesium in the flame. Thus, existing tracer compositions 
will be good starting points to try to find optimum fumers. However, 
this also implies that one is not likely to find a "dark" fumer that 
will be effective. 

Future experiments will try to optimize base drag reduction with 
burning time. Since these tests indicate that burning magnesium in the 
near-wake is an especially effective drag-reducer, one needs a way to 
increase the burning times of such compositions. Two approaches are 
possible. One is to increase the particle-size of the magnesium. 
Another approach is the use of flame retardants such as oxamide. These 
materials have been shown to reduce burning rates by endothermic 
decomposition at the surface, thereby reducing the surface temperature. 
Hopefully one will be able to use such coolants with the energetic 
peroxides which appear to be the oxidizers easiest to ignite. 
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VI. CONCLUSIONS 

1. The so-called "tracer effect" results from a increased base pressure, 

2. Center-perforated washers assist the igniton of pyrotechnics. The 
ignition of pyrotechnics is more difficult in the supersonic flow than 
under static conditions. 

3. The center-perforated steel washers used to restrict the area 
through which the pyrotechnic combustion gases may flow into the wake 
melted and had no effect on base pressure compared to the capsules with 
no washers. 

4. Spinning dramatically increased the fumer burning rate and base 
drag reduction.  It does not appear that the increased base drag reducti 
compensates for the reduced burning time. 

5. A trend indicating that the base drag reduction is proportional to 
the amount of magnesium in the composition was evidenced. 
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Run 1 

Run 1 (Post-Combustion) 

SCHLIEREN PHOTOGRAPHS OF FLOW WITH COMBUSTION 
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Run 35 (Beginning of Combustion) 
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